If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-16x-41=0
a = 1; b = -16; c = -41;
Δ = b2-4ac
Δ = -162-4·1·(-41)
Δ = 420
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{420}=\sqrt{4*105}=\sqrt{4}*\sqrt{105}=2\sqrt{105}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-2\sqrt{105}}{2*1}=\frac{16-2\sqrt{105}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+2\sqrt{105}}{2*1}=\frac{16+2\sqrt{105}}{2} $
| 675=45x | | 3y+54=45 | | 28=7/3x | | (3x+4)(4x+5)=Y | | 11+n/5=6 | | 25x+9=180 | | 84=27+0.15x | | x2-14x-43=0 | | 3/4z=-41/8 | | (x-2)*x=120/2 | | 2(3x-4)+5x=14 | | 8.96=u/7 | | x2+(x+6)2=90 | | 4(3x-3)^(2/3)=36 | | (x-2)*x=120 | | 3x2+2x+45=0 | | -9+3y=45 | | 54=-3(14-8x) | | 6x+19=3x+4 | | -27+3y=45 | | 3x2+19x=154 | | 3x2-41x=-110 | | 8/11a=8 | | 7(2+5x)=371 | | -9v–3v=84 | | H=-16t^2+1064t | | 1,4-x=12 | | 3x-2x=11;x+7=8 | | 4(6x+3)=-180 | | 2/9=y-2/9 | | X^2-7x+3=12 | | 3x-2x=11x+7=8 |